Lesson 2 – Redox. Writing oxidation and reduction half equations for more complex oxidants and reductants.

Simple oxidants such as Ag⁺ are somewhat easy to write a balanced half equation for.

$$Ag^{+}(aq) + e \rightarrow Ag(s)$$

$$Sn^{4+}(aq) + 4e \rightarrow Sn(s)$$

Pb(s) \rightarrow Pb²⁺(aq) + 2e

Electrons always added to the most positive side

$$Cr_2O_7^{-2}/Cr^{3+}$$

To write a balanced half equation follow the steps

1. Balance for all elements other than O or H

$$Cr_2O_7^{-2} \rightarrow 2Cr^{3+}$$

2. balance for oxygen by adding water to the side with least number of oxygens

$$Cr_2O_7^{-2} \rightarrow 2Cr^{3+} + 7H_2O$$

3. balance for hydogens by adding H⁺(aq) to the side with least hydrogens

$$14H^{+}(aq) + Cr_2O_7^{-2} \rightarrow 2Cr^{3+} + 7H_2O$$

4. balance for charge by adding electrons to the most positive side

6e + 14H⁺(aq) +
$$Cr_2O_7^{-2} \rightarrow 2Cr^{3+} + 7H_2O$$

1. Use the steps outlined above to give a balanced half equation, states not included, for the reaction of the the following conjugate pairs. Indicate if the reaction is an oxidation or a reduction.

Keep in mind: Reduction – electrons appear on the left Oxidation – electrons appear on the right

- a. MnO_4^- / Mn^{2+} $5e + 8H^+ + MnO_4^- \rightarrow Mn^{2+} + 4H_2O -- reduction$
- b. BiO_4^{-3} / Bi^{3+} $2e + 8H^+ + BiO_4^{-3} \rightarrow Bi^{3+} + 4H_2O -- reduction$
- c. SO_3^{-2}/SO_4^{-2} $H_2O + SO_3^{-2} \rightarrow SO_4^{-2} + 2H^+ + 2e - oxidation$
- d. NO_3^- / NO_2 $e + 2H^+ + NO_3^- \rightarrow NO_2 + H_2O - reduction$
- e. $C_2O_4^{-2} / CO_2$ $C_2O_4^{-2} \rightarrow 2CO_2 + 2e$ -- oxidation
- f. $H_5IO_6 / IO_3^ 2e + H^+ + H_5IO_6 \rightarrow IO_3^- + 3H_2O -- reduction$
- g. $BrO_3^{-3} / Br^ 4e + 6H^+ + BrO_3^{-3} \rightarrow Br^- + 3H_2O -- reduction$
- h. MnO_2 / Mn_2O_3 $2e + 2H^+ + 2MnO_2 \rightarrow Mn_2O_3 + H_2O -- reduction$
- i. $HClO_4$ / HCl $8e + 8H^+ + HClO_4 \rightarrow HCl + 4H_2O -- reduction$
- j. P_4H_{10} / P_2O_5 $P_4H_{10} + 10H_2O \rightarrow 2P_2O_5 + 30H^+ + 30e$ -- oxidation
- k. P_4 / PO_4^{-3} $16H_2O + P_4 \rightarrow 4PO_4^{-3} + 32H^+ + 20e -- oxidation$